Weekly Pharmacy Pearl: High Dose Nitroglycerin for Pulmonary Edema

Background

In acute decompensated hypertensive heart failure (ADHF), increased afterload and decreased venous capacitance lead to fluid shifts from the splanchnic vasculature to the pulmonary vasculature.¹

Sympathetic crashing acute pulmonary edema (SCAPE) is an extreme form of ADHF characterized by rapid onset of respiratory decompensation, sympathetic surge, and agitation/anxiety in the setting of acute onset hypoxia. It is important to note that despite marked pulmonary edema, many present with euvolemic or even volume depleted status. Thus, a treatment plan focused on reducing both preload and afterload may be more beneficial than IV diuretics.²

Pharmacology of High Dose Nitroglycerin (NTG) in the Setting of Hypertensive Heart Failure

- Mechanism of action: nitric oxide mediated dilation of both veins and arteries³
 - o NTG is a prodrug that requires enzymatic metabolism to become the active vasodilator nitric oxide⁴
- IV bolus: 500-2000 mcg every 2-5 minutes PRN (Max cumulative dose 20 mg)⁵⁻¹⁰
- IV infusion: initiate at 200-400 mcg/min and titrate by 50 mcg/min Q 3-5 min PRN to resolution of symptoms⁵⁻¹⁰
- Adverse effects:
 - o High dose NTG is well tolerated in the literature with a very few instances of SBP < 90 mmHg.
 - Volume depleted patients are at the highest risk of hypotension from nitrate therapy.
 - Some studies have used POCUS-guided assessment of IVC to assess fluid status in patients presenting with SCAPE.²
 - o Headache
- Contraindications to high dose NTG infusion:
 - Use of sildenafil or vardenafil within 24 hours or tadalafil within 48 hours
 - Hypertrophic cardiomyopathy
 - Severe aortic stenosis
 - Anaphylaxis to nitrates

Anaphylaxis to nitrates						
Evidence Summary for High Dose Nitroglycerin in ADHF and SCAPE						
Study	Population	Intervention	Results			
Mathew et al. 2021 ⁵	Prospective observational study 25 patients presenting to the ED with SCAPE	Combination of IV bolus + infusion + NIV Bolus: 600-1000 mcg (mean 872 mcg) Infusion: 100 mcg/min and titrated by 20 mcg/min Q 10 min	 24/25 discharged home 11/24 had symptom resolution within 3 hrs and the remaining within 6 hrs Average ED LOS 15 hrs No hypotension after bolus 2 transient hypotension during infusion that responded to small fluid bolus 			
Stemple et al. 2021 ⁶	Case series N = 4 Presented in SCAPE in obvious respiratory distress	Infusion without IV bolus N =1: 400 mcg/min x 30 min, increased to 800 mcg/min x 4 min and then weaned off. N =2: 400 mcg/min x 8 min, increased to 800 mcg/min x 28 min and then weaned off. N=3: 400 mcg/min x 8 min, increased to 800 mcg/min x 26 min and then weaned off. N=4: 200 mcg/min and remained at > 150 mcg/min for ~ 2 hrs and then weaned off.	 None required intubation nor experienced hypotension 3 of 4 admitted to general cards floor 1 discharged after adjustment of chronic hypertensive meds 			
Paone et al. 2018 ⁷	Case report N=1 Presented with SCAPE in obvious respiratory distress	Infusion started at 400 mcg/min and titrated down by 50 mcg/min Q 5 min as tolerated until resolution of hypertension and respiratory distress	 Symptom resolution 6 min after initiation of infusion Not intubated and admitted to a general medical ward No rebound HTN or respiratory distress recurred 			

Hseih et al. 2018 ⁸	Case series N = 3 Present with SCAPE in obvious respiratory distress	Initial treatment: 3 consecutive SL NITROSTAT 0.6 mg tablets Refractory to SL Nitrostat: 1 mg IV bolus every 2 min PRN (maximum 10 mg)	 All responded to intermittent bolus therapy after failing SL None intubated 1 admitted to general cards floor for HF 2 discharged after hemodialysis No incidence of hypotension
Wilson et al. 2017 ⁹	Retrospective observational cohort study N = 395	IV bolus: 0.5 mg to 2 mg Q 3 to 5 min (median total dose 2 mg) VS Infusion only: median initial rate 20 mcg/min titrated to median maximum rate of 35 mcg/min VS Combination IV bolus + infusion median rate 20 mcg/min titrated to median max rate of 60 mcg/min)	 No difference in intubation rates, bipap use, ED LOS, ICU LOS, or hospital LOS among the different dosing strategies Low incidence of hypotension, with highest in the combination bolus + infusion group (5/82 patients) 79% treated with IV bolus only required one dose No serious adverse effects noted with the use of high-dose NTG bolus, infusion or combination bolus and infusion therapy
Levy et al. 2007 ¹⁰	Nonrandomized, open-label, single- arm study 29 with severe HTN ADHF, not responsive to 4 doses of 0.4 mg SL tabs, IVP furosemide, and 100% Fi02 NRB	Combination IV bolus + infusion Bolus: 2 mg once with an option for additional 2 mg IV Q 3-5 min per physician discretion (Max cumulative dose 20 mg) Infusion: 0.3-0.5 mcg/kg/min titrated by 20 mcg/min Q 1-3 min PRN (max 400 mcg/min)	 4/29 patients required intubation 25/29 received more than one bolus 1 patient had documented hypotension Mean initial infusion rate: 23.6 mcg/min Mean final infusion rate: 50 mcg/min Mean furosemide dose: 85.5 mg IVP

References

- 1. Viau, D. M., Sala-Mercado, J. A., Spranger, M. D., O'Leary, D. S., & Levy, P. D. (2015). The pathophysiology of hypertensive acute heart failure. *Heart*, *101*, 1861–1867. https://doi.org/10.1136/heartjnl-2015-308531
- 2. Agrawal, N., Kumar, A., Aggarwal, P., & Jamshed, N. (2016). Sympathetic crashing acute pulmonary edema. In *Indian Journal of Critical Care Medicine* (Vol. 20, Issue 12, pp. 719–723). Wolters Kluwer Medknow Publications. https://doi.org/10.4103/0972-5229.19571
- 3. Nitroglycerin. Micromedex [Electronic version]. Greenwood Village, CO: Truven Health Analytics. Retrieved May 4, 2022
- Eschenhagen T. Treatment of Ischemic Heart Disease. In: Brunton LL, Hilal-Dandan R, Knollmann BC. eds. Goodman & Gilman's: The Pharmacological Basis of Therapeutics, 13e. McGraw Hill; 2017. Accessed May 05, 2022. https://accessmedicine-mhmedicalcom.libproxy.lib.unc.edu/content.aspx?bookid=2189§ionid=170270669
- 5. Mathew, R., Kumar, A., Sahu, A., Wali, S., & Aggarwal, P. (2021). High-Dose Nitroglycerin Bolus for Sympathetic Crashing Acute Pulmonary Edema: A Prospective Observational Pilot Study. *Journal of Emergency Medicine*, 61(3), 271–277. https://doi.org/10.1016/j.jemermed.2021.05.011
- 6. Stemple, K., DeWitt, K. M., Porter, B. A., Sheeser, M., Blohm, E., & Bisanzo, M. (2021). High-dose nitroglycerin infusion for the management of sympathetic crashing acute pulmonary edema (SCAPE): A case series. *American Journal of Emergency Medicine*, 44, 262–266. https://doi.org/10.1016/j.ajem.2020.03.062
- 7. Paone, S., Clarkson, L., Sin, B., & Punnapuzha, S. (2018). Recognition of Sympathetic Crashing Acute Pulmonary Edema (SCAPE) and use of high-dose nitroglycerin infusion. *American Journal of Emergency Medicine*, *36*(8), 1526.e5-1526.e7. https://doi.org/10.1016/j.ajem.2018.05.013

- 8. Hsieh, Y. T., Lee, T. Y., Kao, J. S., Hsu, H. L., & Chong, C. F. (2018). Treating acute hypertensive cardiogenic pulmonary edema with high-dose nitroglycerin. *Turkish Journal of Emergency Medicine*, *18*(1), 34–36. https://doi.org/10.1016/j.tjem.2018.01.004
- 9. Wilson, S. S., Kwiatkowski, G. M., Millis, S. R., Purakal, J. D., Mahajan, A. P., & Levy, P. D. (2017). Use of nitroglycerin by bolus prevents intensive care unit admission in patients with acute hypertensive heart failure. *American Journal of Emergency Medicine*, *35*(1), 126–131. https://doi.org/10.1016/j.ajem.2016.10.038
- 10. Levy, P., Compton, S., Welch, R., Delgado, G., Jennett, A., Penugonda, N., Dunne, R., & Zalenski, R. (2007). Treatment of Severe Decompensated Heart Failure With High-Dose Intravenous Nitroglycerin: A Feasibility and Outcome Analysis. *Annals of Emergency Medicine*, *50*(2), 144–152. https://doi.org/10.1016/j.annemergmed.2007.02.022